Abstract

In this paper, highly visible-light active BiOI/Graphene oxide nanohybrids (BG) were synthesized by a simple solvothermal technique using polyvinylpyrrolidone (PVP). The as-synthesized photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transition electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR) and UV–vis diffusive reflectance spectra (UV–vis DRS). The nanohybrid samples synthesized with PVP (BGP) showed extremely high efficiency in photodegradation of Reactive Blue 19 (RB19) under visible light. Specially, BGP-1 photocatalyst (1 wt% of graphene oxide (GO)) exhibited the highest RB19 degradation efficiency (about 100%) in 120 min, which was almost 60% and 65% higher than that achieved by using as-synthesized BG nanohybrids and pure BiOI particles, respectively. The results showed that PVP plays a crucial role as a template and strongly controls the growth of BiOI nanoparticles on the surface of graphene nanosheets. The enhanced photocatalytic performance of BGP-1 nanohybrids could be attributed to significant synergetic effects between graphene and BiOI nanoparticles, higher visible light absorption capacity and migration of photoexcited electrons on high conductive graphene nanosheets. This research suggests that BGP nanohybrid is a promising material for the photodegradation of organic dye pollutants under visible light irradiation and could be used commercially in wastewater treatment units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.