Abstract

AbstractPoly(methyl methacrylate) (PMMA) was anchored to multiporous poly(vinylidine fluoride) (PVDF) surface via electron beam preirradiation grafting technique to prepare PVDF/PMMA brushes. The conformation of the PVDF/PMMA brushes was verified through Attenuated total reflection‐Fourier transform infra red spectroscopy (ATR‐FTIR), energy dispersive X‐ray spectroscopy (EDX), and scanning electron microscopy (SEM). Thermal stability of PVDF/PMMA brushes was characterized by thermo gravimetric analysis (TGA). The degradation of PVDF/PMMA brushes showed a two‐step pattern. PVDF/PMMA brushes membrane could be used as polymer electrolyte in lithium‐ion rechargeable batteries after it was activated by uptaking 1 M LiPF6/EC‐DMC (ethylene carbonate/dimethyl carbonate; EC:DMC = 1:1 by volume) electrolyte solution. The activated membrane showed high ionic conductivity, 6.1 × 10−3 S cm−1 at room temperature, and a good electrochemical stability up to 5.0 V. The excellent performances of multiporous PVDF‐g‐PMMA membranes suggest that they are suitable for application in high‐performance lithium‐ion batteries. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 751–758, 2008

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.