Abstract

ABSTRACTNanocomposites based on poly(vinylidene fluoride) (PVDF) filled with barium titanate, BaTiO3, (BT) particles, and multiwalled carbon nanotubes (MWCNTs) were prepared by high‐energy ball milling (HEBM) and subsequent hot pressing. This method of materials preparation allowed obtaining uniform dispersions of the nanofillers. The influence of the particles on the polymer structure and morphology was studied. To understand the origin of changes in the PVDF properties, thermal and electrical behaviors of the PVDF/BT/MWCNT nanocomposites were studied as a function of composition. The addition of BT, MWCNT, or its mixture had not any influence on the PVDF polymorphism. However, calorimetric results pointed out that the presence of the nanofillers exerted nucleation mainly ascribed to the surface to volume ratio of the nanoparticles. The capacitance of the composites increased as the nanofiller content increased, being the effect mainly dependent on the surface to volume ratio of the nanoparticles. The dielectric behavior of the materials as a function of frequency was modeled by a Debye equivalent circuit only below the percolation threshold respect to the amount of MWCNT. The piezoelectric behavior of the ternary nanocomposites was highly affected by the incorporation of the nanofillers only when high dielectric losses occurred above the percolation threshold. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47788.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.