Abstract

SummaryPVD protective coatings for precision molding toolsPrecision glass molding (PGM) is a replicative hot forming process for the production of complex optical components, such as aspherical lenses for digital and mobile phone cameras or optical elements for laser systems. The efficiency and thus also the profitability of the PGM depend on the unit price per pressed component, which correlates primarily with the service lifetime of the pressing tools. To increase tool lifetime, the tool surfaces are coated with protective coatings based on precious metals or carbon using physical vapour deposition (PVD). The PVD coating technology enables the deposition of thin coatings, which also follow more complex surface geometries and achieve a high surface quality. PVD coatings are also commonly used to protect tools from wear and corrosion. This paper presents two chromium‐based nitride hard coatings produced by an industrial PVD unit and investigated for their applicability for PGM. Two different coating architectures were implemented, on the one hand a single coating chromium aluminium nitride (Cr,Al)N coating and on the other hand a nanolaminar CrN/AlN coating with alternating layers of chromium nitride and aluminium nitride. The latter is a coating consisting of hundreds of nano‐layers, only a few nanometers thick. Both coatings, (Cr,Al)N and CrN/AlN, each have a thickness of s ∼ 300 nm in order to follow the tool contour as closely as possible. The properties of the coating systems, which are of particular relevance for PGM, are considered. These include on the one hand the adhesion of glass, the roughness and topography of the surface and the adhesion between the coating and the tool material. In addition, the barrier effect of the coatings against diffusion of oxygen was investigated. In order to reproduce the thermal boundary conditions of the PGM, thermocyclic aging tests are performed and their influence on the different properties is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.