Abstract

Assigning significance in high-dimensional regression is challenging. Most computationally efficient selection algorithms cannot guard against inclusion of noise variables. Asymptotically valid p-values are not available. An exception is a recent proposal by Wasserman and Roeder that splits the data into two parts. The number of variables is then reduced to a manageable size using the first split, while classical variable selection techniques can be applied to the remaining variables, using the data from the second split. This yields asymptotic error control under minimal conditions. This involves a one-time random split of the data, however. Results are sensitive to this arbitrary choice, which amounts to a “p-value lottery” and makes it difficult to reproduce results. Here we show that inference across multiple random splits can be aggregated while maintaining asymptotic control over the inclusion of noise variables. We show that the resulting p-values can be used for control of both family-wise error and false discovery rate. In addition, the proposed aggregation is shown to improve power while reducing the number of falsely selected variables substantially.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.