Abstract

Chitosan, fucoidan, and polyvinyl alcohol are categorized as polymers with biomedical applications. Ampicillin, on the other hand, is considered as an important antibiotic that has shown effectivity in both gram-positive and gram-negative micro-organisms. The aforementioned polymers possess unique properties that are considered desirable for cell regeneration although they exhibit drawbacks that can affect their final application. Therefore, films of these biomaterials were prepared and they were characterized using FTIR, SEM, XRD, degree of swelling and solubility, and MTT assay. The statistical significance of the experiments was determined using a two-way analysis of variance (ANOVA) with p < 0.05. The characterization techniques demonstrated that the obtained material exhibits properties suitable for cell regeneration, and that a higher concentration of natural polymers promotes cells proliferation to a greater extent. The presence of PVA, on the other hand, is responsible for matrix stability and dictates the degree of swelling and solubility. The SEM images demonstrated that neither aggregations nor clusters were formed, which is favorable for the biological properties without detrimental to the morphological and physical features. Cell viability was comparatively similar in samples with and without antibiotic, and the physical and biological properties were not negatively affected. Indeed, the inherent bactericidal effect of chitosan was reinforced by the presence of ampicillin. The new material is an outstanding candidate for cell regeneration as a consequence of the synergic effect that each component provides to the blend.

Highlights

  • Biomedical engineering applies and develops therapies and technologies in order to support, repair or replace damaged cells, tissues, and organs, and it combines techniques from diverse disciplines such as physics, chemistry, biology, engineering, and medicine [1]

  • –OH of Polyvinyl alcohol (PVA) and –OH or –NH2 of chitosan were observed in the blended films. These results suggested the formation of hydrogen bonds between the CHI and PVA molecules [3]

  • Properties this research examined the development of a BAPMbiological made of PVA, CHI, natural polymers

Read more

Summary

Introduction

Biomedical engineering applies and develops therapies and technologies in order to support, repair or replace damaged cells, tissues, and organs, and it combines techniques from diverse disciplines such as physics, chemistry, biology, engineering, and medicine [1]. In the past decades a new generation of synthetic biodegradable polymers and analogous natural polymers have been developed for biomedical applications [2]. Natural polymers do not have the appropriate mechanical properties whereas synthetics are deficient in terms of biocompatibility [3]. In order to overcome the poor performance of natural polymers, bioartificial polymeric materials (BAPMs) have been introduced [4,5,6,7,8]. These combine the biocompatibility of the biological component with the physical and mechanical properties of the synthetic ones [9]. BAPMs may be produced as hydrogels, films, scaffolds, and a great variety of potential applications have been reported including dialysis membranes, artificial skin, cardiovascular devices, implants, bandages, or even controlled drug-release systems [10,11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.