Abstract

Wearable elastic electronic devices have attracted tremendous attention due to their monitoring capabilities for human motion detection. In this work, a hydrogen bond acceptor quaternary ammonium salt, choline chloride (ChCl), has been used to fabricate deep eutectic polymer (DEP) blends with polyvinyl alcohol (PVA). The miscibility, molecular interaction, and physical properties of PVA/ChCl DEP blends were investigated systematically. It is demonstrated that the deep eutectic of PVA/ChCl can be obtained by simple solution blending, and the melting points of both PVA and ChCl are reduced respectively due to the strong hydrogen bond between PVA and ChCl. Due to the elasticity of the PVA/ChCl elastomer and the response of ChCl ions to temperature and humidity, the fabricated sensor showed stable and repeatable resistance changes upon strain, temperature, and humidity variations. We hypothesize that the DEP blend system has potential applications in functional composites and the final PVA/ChCl elastomer composites exhibited high transparent, antifreeze, and recyclable capability, which may be promising for applications in soft/flexible devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.