Abstract

The Comoros is an archipelago in the Indian Ocean located in the Mozambique Channel between the African continent and Madagascar. Geographically Comoros is composed of four islands: Grande Comores, Anjouan, Mohéli and Mayotte (under French administration). Apart from Mayotte, the others three independent islands commonly known as the Union of the Comoros are suffering from energy stress since their independence year 1975 until nowadays. The energy supplied and distributed by the national electricity company, SONELEC produced by diesel engines, is not stable with so much load shedding all the time. This instability energy leads to a lack of a phone network in some telecommunications towers connected to grid. The majority of telecommunications towers are located in rural areas not connected to grid and running on diesel generators, which once again leads to a problem with the telecommunications network when diesel engines fail. The two competing companies which operate in the field of telecommunications in the Comoros, namely Comores Télécom, a national public company and Telma, the private one, are still unable to ensure the provision of the telecommunications network on a regular basis. This is why we propose in the present work, a sizing of hybrid system composed essentially of a diesel generator, a wind turbine and a photovoltaic solar system with storage in batteries for supplying telecommunications towers in order to permanently ensure the provision of the telecommunications network for the well-being of the population. Our future energy must be based on non-polluting energies with significant resources. Renewable energies are the best candidates but with intermittent production especially in rural areas not connected to the national electricity grid whose energy demand is more important to meet the needs of the population. The aim of this work is the sizing of a hybrid system composed of a diesel generator, a wind turbine and a photovoltaic solar system with storage in batteries for supplying telecommunications towers located in rural areas in the Comoros. In fact, to verify the performance of the hybrid system, a numerical study has been carried out with the HOMER 2.68 Beta software using meteorological data from the Comoros. The results obtained show that this hybrid combination is more profitable in the margin of economic cost and environmental assessments with a less expensive investment. These results also show a better optimization of Wind/PV/Battery of the hybrid system used, satisfying the demand and contributing to the preservation of the environment to fight against climate change with a low cost of energy.

Highlights

  • The increase of the price of oil and the depletion of fossil fuel resources are driving the current world towards energy transition, the exploitation of renewable energy resources such as solar, wind hydroelectricity and geothermal energy, in order to guarantee permanent energy availability at a lower cost

  • This is why we propose in the present work, a sizing of hybrid system composed essentially of a diesel generator, a wind turbine and a photovoltaic solar system with storage in batteries for supplying telecommunications towers in order to permanently ensure the provision of the telecommunications network for the well-being of the population

  • The objective of the present study is to evaluate the performance of an autonomous system of electric power generation, coupling a PV array, a wind turbine, and a diesel generator with a storage system made up of batteries to meet the demand of the electric charge for the supply of a telecommunications tower located in rural areas in the Comoros

Read more

Summary

Introduction

The increase of the price of oil and the depletion of fossil fuel resources are driving the current world towards energy transition, the exploitation of renewable energy resources such as solar, wind hydroelectricity and geothermal energy, in order to guarantee permanent energy availability at a lower cost. In Comoros Islands, the exploitation of renewable energy resources is not too developed despite their abundance. Comoros Island is much more affected by the electricity problem due to a permanent lack of energy caused by failing power plants. The rural areas where the telecommunication towers are installed are still affected by the lack of energy supplied by engine-based diesel generators. The power supply of telecommunication towers by hybrid energy (PV/Wind/Gens) can reassure the permanence of energy in order to guarantee the telecommunication network in Comoros

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call