Abstract

The current steps toward the implementation of carbon–neutral electrical energy systems lead to high levels of PV penetration especially in residential sectors. However, there are many limitations in the integration of extra PV generation units in modern distribution systems. Hence, supplementary actions are needed for providing the capability of hosting high levels of PV units in future grids. In this study, the application of Distribution System Reconfiguration (DSR) is examined in order to increase PV Hosting Capacity (PVHC) of a harmonically polluted distribution system. However, bringing several services together, DSR is studied in a multiobjective framework to improve the voltage profile and decrease the total energy loss as well as improving the PVHC. Moreover, probabilistic demand scenarios are included in this study through applying different combinations of linear and nonlinear load-levels to provide a more precise assessment of the objectives. Finally, a solution strategy is proposed for the presented multiobjective problem based on the implementation of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and fuzzy decision-making method. The proposed framework is then applied to modified 33-bus and 69-bus distribution systems in presence of nonlinear loads. According to the results, applying the proposed methodology for DSR could successfully increase the PVHC of the harmonic-polluted grid as well as providing voltage profile stabilization and a considerable decrease of the energy loss in the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call