Abstract
AbstractPlastering is dominated manually, exhibiting low levels of automation and inconsistent finished quality. A comprehensive review of literature indicates that extant plastering robots demonstrate a subpar performance when tasked with rectifying defects in the transition area. The limitations encompass a lack of capacity to independently evaluate the quality of work or perform remedial plastering procedures. To address this issue, this research describes the system design of the Puttybot and a paradigm of plastering to solve the stated problems. The Puttybot consists of a mobile chassis, a lift platform, and a macro/micromanipulator. The force‐controlled scraper parameters have been calibrated to dynamically modify their rigidity in response to the applied putty. This strategy utilizes convolutional neural networks to identify plastering defects and executes the plastering operation with force feedback. This paradigm's effectiveness was validated during an autonomous plastering trial wherein a large‐scale wall was processed without human involvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.