Abstract

On July 8, 1998, the deadliest glacier lake outburst flood (GLOF) in Central Asia for at least the last 100 years occurred in the Shakhimardan catchment, Kyrgyzstan. Most of the >100 victims were, however, killed in the Uzbek enclave of Shakhimardan, i.e. in the downstream part of this transboundary catchment. No warnings were issued between the two countries. In addition, due to political tensions, access to the site was impossible and a detailed assessment of the disaster could not be realized until now. Using remote sensing, we show that the lake at the origin of the “Shakhimardan event” appeared in the 1960s and drained periodically, without, however, causing damage to downstream areas before it eventually disappeared in the late 1980s. Based on post-event videos, we conclude that the GLOF-producing depression was again filled with a lake, estimated at 20 ± 1.2 × 103 m2 in area, before the disaster. The lake burst was likely driven by the rapidly rising air temperatures and the melting of snow/ice in late June and early July. The GLOF first travelled as a debris flow for 17 km, then continued as a debris flood in the increasingly flatter channel for another 20 km. Interestingly, the mean weighted channel angle in the areas of erosion was extremely low at 6.7°. The flood continued further downstream for ~100 km from its source. Today, 32 lakes (total area ~300 × 103 m2 in 2018) exist in the catchment, with several of the larger lakes (>5 × 103 m2) showing signs of instability. We therefore call for a systematic monitoring of environments like the Shakhimardan catchment, as well as for the installation of early warning systems at critical sites, with exchange of data between the Kyrgyz and Uzbek disaster risk management units, so as to mitigate existing and evolving GLOF risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call