Abstract

Bioturbation of reef sediments aerates the upper sediment layers and releases organic material to benthic communities. Despite being the larger and more conspicuous bioturbators on coral reefs, the value of holothurians (sea cucumbers) to reef ecosystems is less often attributed to their ecosystem services than their value for fisheries. This may be because they are considered to have an insignificant effect on reef health relative to other animals. Here, we ground-truthed remote sensing data obtained from drone and satellite imagery to estimate the bioturbation rates of holothurians across the 19 km2 Heron Island Reef in Queensland, Australia. Ex situ bioturbation rates of the most abundant holothurian, Holothuria atra, were assessed during 24-h feeding experiments. Using density measurements of holothurians across reef flat zones in a 27,000 m2 map produced from drone imagery, we extrapolated bioturbation across the reef using satellite remote sensing data. Individual H. atra were estimated to produce approximately 14 kg of bioturbated sediment per year. On a reef scale (excluding the reef lagoon) and accounting for varying densities of holothurians across different reef zones, total bioturbation from holothurians at Heron Reef was estimated at over 64,000 metric tonnes per year, slightly more than the mass of five Eiffel Towers. These results highlight the scale of structural and biochemical impacts that holothurians have on reef flats and their importance to ecosystem functioning and services. Management of these animals on reefs is imperative as overharvesting would likely cause substantial negative effects on sedimentary ecosystems and their biogeochemistry in corals reefs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call