Abstract

BackgroundPostural control relies on sensory information from visual, vestibular and proprioceptive channels, with proprioception being the key sensory modality in this task. Two well-established ways of manipulating proprioceptive information in postural control are tendon vibration and sway referencing. The aim of the present study was to assess postural adaptation when inaccurate proprioceptive information is introduced using tendon vibration and sway referencing in isolation and combination. MethodsSeventeen young adults were asked to stand, without vision, for 2 min on a fixed surface (baseline) immediately followed by 3 min of bilateral Achilles tendon vibration, sway reference, or combined presentation of the two manipulations (adaptation) and finally 3 min of standing on a fixed surface (aftereffect). ResultsDuring adaptation, vibration showed the lowest sway variability, followed by sway reference and the combined condition. Spectral analyses focusing on the dominant frequencies in this task (0–0.4 Hz) showed that in the first half of adaptation sway amplitude was greater when the two manipulations were combined compared with each manipulation alone. However, in the second half differences between sway reference and the combined condition disappeared but differences between vibration and the other two conditions increased. ConclusionWe interpret these findings primarily as due to a prolonged attenuation in effects of vibration over the course of the adaptation phase and we offer two explanations for this phenomenon. One is a decline in neurotransmitter release from the group Ia terminals and the other is sensory reweighting which down-weights proprioception and up-weights the accurate, vestibular information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.