Abstract

Unlike people, household robots cannot rely on commonsense knowledge when accomplishing everyday tasks. We believe that this is one of the reasons why they perform poorly in comparison to humans. By integrating extensive collections of commonsense knowledge into mobile robot’s knowledge bases, the work proposed in this paper enables robots to flexibly infer control decisions under changing environmental conditions. We present a system that converts commonsense knowledge from the large Open Mind Indoor Common Sense database from natural language into a Description Logic representation that allows for automated reasoning and for relating it to other sources of knowledge.KeywordsOntological ConceptEveryday TaskCommonsense KnowledgeCausal RuleCommonsense ReasoningThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.