Abstract
Workflow provenance typically assumes that each module is a "black-box", so that each output depends on all inputs ( coarse-grained dependencies). Furthermore, it does not model the internal state of a module, which can change between repeated executions. In practice, however, an output may depend on only a small subset of the inputs ( fine-grained dependencies) as well as on the internal state of the module. We present a novel provenance framework that marries database-style and workflow-style provenance, by using Pig Latin to expose the functionality of modules, thus capturing internal state and fine-grained dependencies. A critical ingredient in our solution is the use of a novel form of provenance graph that models module invocations and yields a compact representation of fine-grained workflow provenance. It also enables a number of novel graph transformation operations, allowing to choose the desired level of granularity in provenance querying (ZoomIn and ZoomOut), and supporting "what-if" workflow analytic queries. We implemented our approach in the Lipstick system and developed a benchmark in support of a systematic performance evaluation. Our results demonstrate the feasibility of tracking and querying fine-grained workflow provenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.