Abstract

Entanglement between a photon and a stationary particle is a key resource for quantum communication. The effect has now been observed for a photon and a single electron spin in a semiconductor nanostructure. See Letters p.421 & p.426 Future quantum networks will combine ideally stationary quantum bits (qubits), such as single electron spins, with 'flying' qubits, which are photons that transfer quantum states between distant qubits. It has therefore been a long-standing challenge in the field of quantum computation and communication to couple a single electron spin to a single photon in a solid-state platform. Two groups working independently have now achieved that goal, by demonstrating entanglement between a photon and a single electron spin trapped in a semiconductor 'quantum dot' structure. The quantum dot acts as the stationary node. This achievement is a small step towards eventual implementation of quantum networks that can support long-distance quantum communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.