Abstract

Silicon (Si) is a beneficial element for plants. To understand Si uptake and accumulation in poinsettia, the Si transporters and their expression patterns were investigated. Nodulin 26-like intrinsic membrane proteins (NIPs) act as transporters of water and small solutes, including silicic acid. In this study, one NIP member, designated EpLsi1, was identified. Additionally, a protein from the citrate transporter family, designated EpLsi2, was identified. Sequence analyses indicated that EpLsi1 belonged to the NIP-I subgroup, which has a low Si uptake capacity. Consistently, the measured tissue Si content in the poinsettia was less than 1.73 ± 0.17 mg·g−1 dry weight, which was very low when compared to that in high Si accumulators. The expressions of EpLsi1 and EpLsi2 in poinsettia cuttings treated with 0 mg·L−1 Si decreased under temperature stresses. A short-term Si supplementation decreased the expressions of both EpLsi1 and EpLsi2 in the roots and leaves, while a long-term Si supplementation increased the expression of EpLsi1 in the leaves, bracts, and cyathia, and increased the expression of EpLsi2 in the roots and leaves. Tissue Si content increased in the roots of cuttings treated with 75 mg·L−1 Si at both 4 and 40 °C, indicating that the transport activities of the EpLsi1 were enhanced under temperature stresses. A long-term Si supplementation increased the tissue Si content in the roots of poinsettia treated with 75 mg·L−1 Si. Overall, poinsettia was a low Si accumulator, the expressions of Si transporters were down-regulated, and the tissue Si content increased with temperature stresses and Si supplementation. These results may help the breeding and commercial production of poinsettia.

Highlights

  • The effects of silicon (Si) on many flowering plants [1], including poinsettia (Euphorbia pulcherrimaWilld.) [2], have been investigated, and the results have demonstrated that Si has an effect on plant development

  • A short-term Si supplementation decreased the expressions of both EpLsi1 and EpLsi2 in the roots and leaves, while a long-term Si supplementation increased the expression of EpLsi1 in the leaves, bracts, and cyathia, and increased the expression of EpLsi2 in the roots and leaves

  • Tissue Si content increased in the roots of cuttings treated with 75 mg·L−1 Si at both 4 and 40 ◦ C, indicating that the transport activities of the EpLsi1 were enhanced under temperature stresses

Read more

Summary

Introduction

The effects of silicon (Si) on many flowering plants [1], including poinsettia (Euphorbia pulcherrimaWilld.) [2], have been investigated, and the results have demonstrated that Si has an effect on plant development. Lsi belongs to the nodulin 26-like intrinsic membrane protein (NIP) subfamily of the major intrinsic protein (MIP)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call