Abstract

Quantum criticality (QC) in spin-density-wave antiferromagnetic Cr and Cr alloy systems is a topic of current interest. In the present study, V was used as a tuning parameter to drive the Néel transition temperature (TN) of the (Cr90Ir10)100−yVy alloy series with 0 ≤ y ≤ 14.3 to zero and search for effects of QC in the process. The magnetic properties and possible QC behaviour (QCB) in this alloy system were investigated through electrical resistivity (ρ), specific heat (Cp), and susceptibility (χ) measurements as a function of temperature (T), indicating that TN is suppressed to zero at a critical concentration yc ≈ 9. The Sommerfeld coefficient (γ) is considered a key indicator of QCB and a peak is observed in γ(y) at yc on decreasing y through this concentration, followed by a sharp decreasing trend. This behaviour is reminiscent of that observed for γ of the prototypical Cr100−xVx QC system and allows for the classification of yc in the (Cr90Ir10)100−yVy alloy system as a possible QC point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.