Abstract

Acidic ash derived volcanic soils (Andisols) support 50% of cereal production in Chile. Nitrogen (N) is essential for cereal crops and commonly added as urea with consequent environmental concerns due to leaching. Despite the relevance of N to plant growth, few studies have focused on understanding the application, management and ecological role of N2-fixing bacterial populations as tool for improve the N nutrition of cereal crops in Chile. It is known that N2-fixing bacteria commonly inhabits diverse plant compartments (e.g., rhizosphere and root endosphere) where they can supply N for plant growth. Here, we used culture-independent and dependent approaches to characterize and compare the putative N2-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an Andisol from southern Chile. Our results showed significantly greater bacterial loads in the rhizosphere than the root endosphere. Quantitative PCR results indicated that the copy number of the 16S rRNA gene ranged from 1012~1013 and 107~108 g−1 sample in rhizosphere and root endosphere, respectively. The nifH gene copy number ranged from 105~106 and 105 g−1 sample in rhizosphere and root endosphere, respectively. The total culturable bacteria number ranged from 109~1010 and 107~108 CFU g−1 sample in rhizosphere and 104~105 and 104 CFU g−1 sample in root endosphere using LB and NM-1 media, respectively. Indirect counts of putative N2-fixing bacteria were 103 and 102~103 CFU g−1 sample in rhizosphere and root endosphere using NFb medium, respectively. Sequencing of 16S rRNA genes from randomly selected putative N2-fixing bacteria revealed the presence of members of Proteobacteria (Bosea and Roseomonas), Actinobacteria (Georgenia, Mycobacterium, Microbacterium, Leifsonia, and Arthrobacter), Bacteroidetes (Chitinophaga) and Firmicutes (Bacillus and Psychrobacillus) taxa. Differences in 16S rRNA and putative nifH-containing bacterial communities between rhizosphere and root endosphere were shown by denaturing gradient gel electrophoresis (DGGE). This study shows a compartmentalization between rhizosphere and root endosphere for both the abundance and diversity of total (16S rRNA) and putative N2-fixing bacterial communities on wheat plants grown in Chilean Andisols. This information can be relevant for the design and application of agronomic strategies to enhance sustainable N-utilization in cereal crops in Chile.

Highlights

  • Agricultural production in southern Chile is established in acidic ash derived volcanic soils (Andisols), which support around 50% of cereal production in Chile (Laval and Garcia, 2018)

  • Nitrogen is an essential nutrient for plant growth and N2-fixing bacteria play an important role in plant nutrition

  • Studies focused to N2-fixing bacteria in Chilean agroecosystems are scarce, FIGURE 2 | Counts (CFU per g of sample) of total culturable (A) in rhizosphere and root endosphere samples of wheat plants using general (LB and NM−1) and putative N2-fixing bacteria (B) with selective (Congo red malic–acid; Congo red malic-acid (CRMA)) media

Read more

Summary

Introduction

Agricultural production in southern Chile is established in acidic ash derived volcanic soils (Andisols), which support around 50% of cereal production in Chile (Laval and Garcia, 2018). In these soils, nitrogen (N) fertilization (as urea and other chemicals) is a common practice to improve agricultural production. The recruitment of N2-fixing bacteria under symbiotic or non-symbiotic relationships (e.g., nodulation of legume plants by Rhizobium spp. or interaction with free-living associative N2 fixers) helps the host plant to obtain N directly from atmosphere and fulfill its nutritional requirements (de Bruijn, 2015). Studies have show that some genera of free-living bacteria (e.g., Azospirillum and Azotobacter, and others) can colonize diverse plant niches such as the rhizosphere (soil influenced by plant roots) and endosphere (inner tissues of plants), contributing to the N needs of non-leguminous plants (Bhattacharyya and Jha, 2012)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call