Abstract

Breast cancer is one of the most malignant diseases among females. N-glycoproteomics studies have shown that N-glycosylation alteration of tumor cells is the key player of cancer progression, multidrug resistance (MDR) and high mortality. Cancer stem cells (CSCs) have the remarkable potential of self-renewing and differentiation which leads to drug resistance and metastasis. To investigate the differentially expressed N-glycosylation in adriamycin-resistant breast cancer stem cells MCF-7/ADR CSCs (relative to MCF-7 CSCs) and find the putative biomarkers, 1:1 paired ZIC-HILIC-enriched and stable isotopic diethyl labelled (SIDE) intact N-glycopeptides from MCF-7/ADR CSCs and MCF-7 CSCs were analyzed with C18-RPLC-ESI-MS/MS (HCD with stepped NCE); differentially expressed intact N-glycopeptides (DEGPs) were identified and quantified via search engine GPSeeker. With control of spectrum-level FDR≤1%, 5515 intact N-glycopeptides were identified (1737 N-glycosites, 1705 peptide backbones and 1516 intact N-glycoproteins; 181 putative N-glycan linkages and 68 monosaccharide compositions). Among 5515 intact N-glycopeptide IDs, 3864 were identified with glycoform score≥1, i.e., one or more structure-diagnostic fragment ions were observed to distinguish sequence isomers. With the three technical replicates and the criteria of fold change≥1.5 and p value<0.05, 380 DEGPs (corresponding to 153 intact N-glycoproteins) were found along with 293 down-regulated and 87 up-regulated. For these 153 intact N-glycoproteins, the molecular functions and biological processes of were comprehensively discussed, and side-to-side comparison of differential expression results with other method were also made.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call