Abstract

Pushover analysis is a static, nonlinear procedure using simplified nonlinear technique to estimate seismic structural deformations. It is an incremental static analysis used to determine the force-displacement relationship, or the capacity curve, for a structure or structural element. The analysis involves applying horizontal loads, in a prescribed pattern, to the structure incrementally, i.e. pushing the structure and plotting the total applied shear force and associated lateral displacement at each increment, until the structure or collapse condition. In technique a computer model of the building is subjected to a lateral load of a certain shape (i.e., inverted triangular or uniform). The intensity of the lateral load is slowly increased and the sequence of cracks, yielding, plastic hinge formation, and failure of various structural components is recorded. Pushover analysis can provide a significant insight into the weak links in seismic performance of a structure. The performance criteria for pushover analysis are generally established as the desired state of the building given roof-top or spectral displacement amplitude. The seismic response of RC building frame in terms of performance point and the effect of earthquake forces on multi story building frame with the help of pushover analysis is carried out in this paper. In the present study a building frame is designed as per Indian standard i.e. IS 456:2000 and IS 1893:2002. The main objective of this study i s to check the kind of performance a building can give when designed as per Indian Standards. The pushover analysis of the building frame is carried out by using structural analysis and design software SAP 2000.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.