Abstract

Calcium ions (Ca2+) are abundantly present in the human body; they perform essential roles in various biological functions. In this study, we propose a highly sensitive and selective biosensor platform for Ca2+ detection, which comprises a dual-gate (DG) field-effect transistor (FET) with a high-k engineered gate dielectric, silicon nanowire (SiNW) random network channel, and Ca2+-selective extended gate. The SiNW channel device, which was fabricated via the template transfer method, exhibits superior Ca2+ sensing characteristics compared to conventional film channel devices. An exceptionally high Ca2+ sensitivity of 208.25 mV/dec was achieved through the self-amplification of capacitively coupled DG operation and an enhanced amplification ratio resulting from the high surface-to-volume ratio of the SiNW channel. The SiNW channel device demonstrated stable and reliable sensing characteristics, as evidenced by minimal hysteresis and drift effects, with the hysteresis voltage and drift rate measuring less than 6.53% of the Ca2+ sensitivity. Furthermore, the Ca2+-selective characteristics of the biosensor platform were elucidated through experiments with pH buffer, NaCl, and KCl solutions, wherein the sensitivities of the interfering ions were below 7.82% compared to the Ca2+ sensitivity. The proposed Ca2+-selective biosensor platform exhibits exceptional performance and holds great potential in various biosensing fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.