Abstract

Luminescence Boltzmann thermometry is one of the most reliable techniques used to locally probe temperature in a contactless mode. However, to date, there is no report on cryogenic thermometers based on the highly sensitive and reliable Boltzmann-based 4T2 → 4A2/2E → 4A2 emission ratio of Cr3+. On the basis of structural information of the local HfO6 octahedral site we demonstrated the potential of the CaHfO3:Cr3+ system by combining deep theoretical and experimental investigation. The material exhibits simultaneous emission from both the 2E and 4T2 excited states, following the Boltzmann law in a cryogenic temperature range of 40-150 K. The promising thermometric performance corroborates the potential of CaHfO3:Cr3+ as a Boltzmann cryothermometer, being characterized by a high relative sensitivity (∼ 2%·K-1 at 40 K) and exceptional thermal resolution (0.045-0.77 K in the 40-150 K range). Moreover, by exploiting the flexibility of the 4T2-2E energy gap controlled by the crystal field of the local octahedral site, the design proposed herein could be expanded to develop new Cr3+-doped cryogenic thermometers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.