Abstract

Improving DFT with deep learning In the past 30 years, density functional theory (DFT) has emerged as the most widely used electronic structure method to predict the properties of various systems in chemistry, biology, and materials science. Despite a long history of successes, state-of-the-art DFT functionals have crucial limitations. In particular, significant systematic errors are observed for charge densities involving mobile charges and spins. Kirkpatrick et al . developed a framework to train a deep neural network on accurate chemical data and fractional electron constraints (see the Perspective by Perdew). The resulting functional outperforms traditional functionals on thorough benchmarks for main-group atoms and molecules. The present work offers a solution to a long-standing critical problem in DFT and demonstrates the success of combining DFT with the modern machine-learning methodology. —YS

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.