Abstract
The amplitude of the speech signal varies over time, and the speech envelope is an attempt to characterise this variation in the form of an acoustic feature. Although tacitly assumed, the similarity between the speech envelope-derived time series and that of phonetic objects (e.g., vowels) remains empirically unestablished. The current paper, therefore, evaluates several speech envelope extraction techniques, such as the Hilbert transform, by comparing different acoustic landmarks (e.g., peaks in the speech envelope) with manual phonetic annotation in a naturalistic and diverse dataset. Joint speech tasks are also introduced to determine which acoustic landmarks are most closely coordinated when voices are aligned. Finally, the acoustic landmarks are evaluated as predictors for the temporal characterisation of speaking style using classification tasks. The landmark that performed most closely to annotated vowel onsets was peaks in the first derivative of a human audition-informed envelope, consistent with converging evidence from neural and behavioural data. However, differences also emerged based on language and speaking style. Overall, the results show that both the choice of speech envelope extraction technique and the form of speech under study affect how sensitive an engineered feature is at capturing aspects of speech rhythm, such as the timing of vowels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.