Abstract

Hybrid capacitors, especially sodium hybrid capacitors (NHCs), have continued to gain importance and are extensively studied based on their excellent potential to serve as advanced devices for fulfilling high energy and high power requirements at a low cost. To achieve remarkable performance in hybrid capacitors, the two electrodes employed must be superior with enhanced charge storage capability and fast kinetics. In this study, a new sodium hybrid capacitor system with a sodium super ionic conductor NaTi2(PO4)3 grown on graphene nanosheets as an intercalation electrode and 2D graphene nanosheets as an adsorption electrode is reported for the first time. This new system delivers a high energy density of ≈80 W h kg−1 and a high specific power of 8 kW kg−1. An ultralow performance fading of ≈0.13% per 1000 cycles (90%–75 000 cycles) outperforms previously reported sodium ion capacitors. The enhanced charge transfer kinetics and reduced interfacial resistance at high current rates deliver a high specific energy without compromising the high specific power along with high durability, and thereby bridge batteries and capacitors. This new research on kinetically enhanced NHCs can be a trendsetter for the development of advanced energy storage devices requiring high energy—high power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call