Abstract

We describe the pushforward of a matrix factorization along a ring morphism in terms of an idempotent defined using relative Atiyah classes, and we use this construction to study the convolution of kernels defining integral functors between categories of matrix factorizations. We give an elementary proof of a formula for the Chern character of the convolution generalizing the Hirzebruch–Riemann–Roch formula of Polishchuk and Vaintrob.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.