Abstract

Pushing economy and wheelchair propulsion technique were examined for 8 wheelchair racers on a motorized treadmill at 6.0, 6.5, and 7.0 m/s. Kinematic data for the sagittal view were collected by a video camera for two-dimensional analysis. Adaptations to speed changes occurred, initially by a decrease in cycle time and an increase in cycle rate, and later by an increase in the flexion of the elbow. At each speed there were large variations in pushing economy between individuals. The relationship between pushing economy and selected kinematic variables revealed that at 6.0, 6.5, and 7.0 m/s, economy was associated with (a) the lighter athletes (r = .89, .86, .83), (b) a greater range of elbow movement (r = -.85, -.65, -.63), and (c) a lower push rate (r = .73, .81, .63), respectively. Effects of lesion level and wheelchair design may be more important in explaining differences in pushing economy than differences in propulsion technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.