Abstract

AbstractDatabase query engines use pull-based or push-based approaches to avoid the materialization of data across query operators. In this paper, we study these two types of query engines in depth and present the limitations and advantages of each engine. Similarly, the programming languages community has developed loop fusion techniques to remove intermediate collections in the context of collection programming. We draw parallels between databases (DB) and programming language (PL) research by demonstrating the connection between pipelined query engines and loop fusion techniques. Based on this connection, we propose a new type of pull-based engine, inspired by a loop fusion technique, which combines the benefits of both approaches. Then, we experimentally evaluate the various engines, in the context of query compilation, for the first time in a fair environment, eliminating the biasing impact of ancillary optimizations that have traditionally only been used with one of the approaches. We show that for realistic analytical workloads, there is no considerable advantage for either form of pipelined query engine, as opposed to what recent research suggests. Also, by using micro-benchmarks, which demonstrate certain edge cases on which one approach or the other performs better, we show that our proposed engine dominates the existing engines by combining the benefits of both.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.