Abstract

Purpose The purpose of this paper is to introduce a quadruped robot strategy to avoid tipping down because of side impact disturbance and a control algorithm that guarantees the strategy can be controlled stably even in the presence of disturbances or model uncertainties. Design/methodology/approach A quadruped robot was developed. Trot gait is applied so the quadruped can be modelled as a compass biped model. The algorithm to find a correct stepping position after an impact was developed. A particle swarm optimization-based structure-specified mixed sensitivity (H2/H∞) robust is applied to reach the stepping position. Findings By measuring the angle and speed of the side tipping after an impact disturbance, a point location for the robot to step or the foothold recovery point (FRP) was successfully generated. The proposed particle swarm optimization-based structure-specified mixed sensitivity H2/H∞ robust control also successfully brought the legs to the desired point. Practical implications A traditional H∞ controller synthesis usually results in a very high order of controller. This makes implementation on an embedded controller very difficult. The proposed controller is just a second-order controller but it can handle the uncertainties and disturbances that arise and guarantee that FRP can be reached. Originality/value The first contribution is the proposed low-order robust H2/H∞ controller so it is easy to be programmed on a small embedded system. The second is FRP, a stepping point for a quadruped robot after receiving side impact disturbance so the robot will not fall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.