Abstract

In this work, we report the design and the preparation of two new dyes and a molecular dyad for the photoelectrochemical hydrogen production from water in a dye-sensitized photoelectrochemical cell (DSPEC). We designed dyes that include a benzothiadiazole (BTD) and an indacenodithiophene (IDT) units, and we obtained a new molecular dyad by covalent coupling with the cobalt diimine–dioxime catalyst. The introduction of the benzothiadiazole core in the structure improves the absorption properties and leads to an extension of the spectrum in the visible range up to 650 nm. The photoelectrochemical properties of the new dyad were evaluated on pristine and lithium-doped NiO electrodes. We demonstrate that increasing the light harvesting efficiency of the dyad by introducing a IDT–BTD chromophore is clearly beneficial for the photoelectrochemical activity. We also demonstrate that lithium doping of NiO, which improves the electronic conductivity of the mesoporous film, leads to a significant increase in performance, in terms of TON and F.E., more than doubled with our new dyad. This BTD-based molecular system outperforms the results of previously reported dyads using the same catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.