Abstract
In flexi-grid optical networks, fragmentation of spectrum resources may significantly affect the overall network efficiency. Effective techniques for defragmentation (i.e., re-optimization) are then required to limit the wasting of spectrum resources. However, current defragmentation techniques can only be implemented thanks to the presence of additional resources, such as spare expensive transponders. In this study, we propose, discuss and evaluate a novel defragmentation technique called push-pull. The technique is based on dynamic lightpath frequency retuning upon proper reconfiguration of allocated spectrum resources. It does not require additional transponders and does not determine traffic disruption. All the relevant technological limitations that may affect the push-pull applicability are discussed in the context of both optically-amplified direct and coherent detection systems. The technique is then successfully demonstrated in two different flexi-grid network testbeds, reproducing the two aforementioned scenarios. In particular, the reoptimization of a 10 Gb/s OOK lightpath is safely completed in few seconds (mainly due just to node configuration latencies) without experiencing any traffic disruption. Similarly, the push-pull is successfully performed on a 100 Gb/s PM-QPSK lightpath, providing no traffic disruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.