Abstract
Circular Economy refers to a move from linear business models, in which products are manufactured from raw materials, used and then discarded, to circular business models where products or parts are re-used, remanufactured or recycled. Structural steel is highly compatible with this concept; however, when steel-concrete composite structures are used, recycling becomes difficult and the potential for reuse is lost. In order to make steel-concrete composite structures reusable, bolted connections should replace the commonly used welded headed studs. Furthermore, the reusable parts should be designed to withstand repeated use.This paper presents a desktop study and the corresponding laboratory experiments on demountable shear connectors that facilitate recyclability and even provide the potential for reusing complete structural elements. In the Laboratory of Steel and Composite Structures of the University of Luxembourg 15 push-out tests have been carried out using different bolted connection systems suitable for multiple use. The shear connectors have been evaluated based on their shear strength, stiffness, slip capacity, ductility and ability of demounting. The investigated systems included pre-stressed and epoxy resin injection bolts, solid slabs and solid slabs in combination with profiled steel sheeting. The results showed that the tested demountable shear connections could provide higher shear resistance than conventional shear connections. The critical failure mode was the shear failure of the bolts, which is a brittle failure. There was no visible damage observed on the connected members. The application of epoxy resin in the hole clearance resulted in lower slip capacity. The outcome provides an important basis for the justification of the forthcoming enhancement and validation of numerical models of the demountable shear connections. The failure behaviour, the observed damages and the resulting ability of the elements for re-use are discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.