Abstract

Tim Hunt took an undergraduate degree in Natural Sciences at Cambridge in 1964, and his PhD and subsequent work focussed on the control of protein synthesis until 1982, when his adventitious discovery of the central cell cycle regulator cyclin, while he was teaching at the Marine Biological Laboratory in Woods Hole, redirected him to the study of cell cycle regulation. From 1990 to his retirement Tim worked in the Clare Hall Laboratories of Cancer Research UK. He shared the Nobel Prize in Physiology and Medicine with Lee Hartwell and Paul Nurse in 2001, and talked to us about the series of coincidences that led him to the prizewinning discovery.

Highlights

  • Tim Hunt took an undergraduate degree in Natural Sciences at Cambridge in 1964, and his PhD and subsequent work focussed on the control of protein synthesis until 1982, when his adventitious discovery of the central cell cycle regulator cyclin, while he was teaching at the Marine Biological Laboratory in Woods Hole, redirected him to the study of cell cycle regulation

  • I’d gone to Woods Hole originally to study how protein synthesis was turned on at fertilization, but you couldn’t avoid noticing that after they had turned on protein synthesis, they divided and went on dividing

  • 1982, my main research problem was going very badly, so as a sort of afterthought — the formal part of teaching the course had stopped — I just idly wondered whether the patterns of protein synthesis in parthenogenetically activated sea urchin eggs was the same as or different from what happened when you fertilized them properly

Read more

Summary

Introduction

Tim Hunt took an undergraduate degree in Natural Sciences at Cambridge in 1964, and his PhD and subsequent work focussed on the control of protein synthesis until 1982, when his adventitious discovery of the central cell cycle regulator cyclin, while he was teaching at the Marine Biological Laboratory in Woods Hole, redirected him to the study of cell cycle regulation. I began to think about cell cycle control from that moment. That didn’t strike anybody as unusual, because if you think about normal cells, they have to double in size, so they need to make new proteins.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.