Abstract

The cerebellum is organized into a series of parasagittally aligned bands that may be revealed histologically in the adult mouse by largely complementary immunostaining of Purkinje cells sets with the monoclonal antibodies Zebrin II (ZII; antigen:aldolase C) and P-path (PP; antigen:90-acetyl glycolipids). We compared the normal staining pattern using these markers and an antibody to calbindin with that found in the reeler mutants (rl/rl), in which most Purkinje cell migration is halted beneath the cerebellar white matter. The results revealed that Purkinje cells in reeler mutants, despite their ectopic location in large subcortical masses, show a clear tendency to distribute into alternating zones that either stain for Zebrin II or for P-path, with variable transition zones of mixed labeling. However, the estimated number of zones was fewer than in the normal adult cortex: roughly 7-9 zones are revealed per side in the mutant compared with 14 major divisions in wild type mice. These results raise the possibility that neurons destined to express these markers are segregated during their migration and that the final phase of migration into the cortex might involve further splitting or interdigitation between cell sets expressing the two antigens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.