Abstract

Purkinje cell (PC) activity in the flocculus of trained monkeys was recorded during: 1) Vestibular stimulation in darkness. 2) Suppression of the vestibulo-ocular reflex (VOR-supp) by fixation of a small light spot stationary with respect to the monkey. 3) Visual-vestibular conflict (i.e. the visual surround moves together with the monkey during vestibular stimulation), which leads to attenuation or suppression of vestibular nystagmus. 4) Smooth pursuit eye movements. 5) Optokinetic nystagmus (OKN). 6) Suppression of nystagmus during optokinetic stimulation (OKN-supp) by fixation of a small light spot; whereby stimulus velocity corresponds then to image slip velocity. Results were obtained from PCs, which were activated with VOR-supp during rotation to the ipsilateral side. The same PCs were also modulated during smooth pursuit and visual-vestibular conflict. No tonic modulation during constant velocity OKN occurred with slow-phase nystagmus velocities below 40-60 deg/s. Tonic responses were only seen at higher nystagmus velocities. Transient activity changes appeared at the beginning and end of optokinetic stimulation. PCs were not modulated by image slip velocity during OKN-supp. The results show that in primates the same population of floccular PCs is involved in different mechanisms of visual-vestibular interaction and that smooth pursuit and certain components of OKN slow-phase velocity share the same neural pathway. It is argued that the activity of these neurons can neither be related strictly to gaze, eye or image slip velocity; instead, their activity pattern can be best interpreted by assuming a modulation, which is complementary to that of central vestibular neurons of the vestibular nuclei, in the control of slow eye movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call