Abstract

AbstractClean and efficient separation is an important requirement for the high‐value‐added recycling of end‐of‐life automobile polymers. In this study, polymer particles for vehicles were considered as research objects, and a two‐stage electrostatic separation device was designed to separate a mixture of three polymer particles. A kinematic model of friction‐charged particles in a two‐stage free‐fall separator was established. Then, a suitable time period for triboelectrostatic charging with regard to electrostatic separation was determined, and a charge–mass ratio distribution of mixed‐polymer particles, that is, polyamide (PA), polypropylene (PP), and polyethylene (PE), was measured using a Faraday cage based on the triboelectrostatic charging experiment of three types of particles in a friction barrel‐type tribocharger. The theoretical purities of PA, PP, and PE were calculated using the motion and particle charge–mass ratio distribution models were 100.00%, 89.51%, and 92.95% respectively. The experimental purities of PA, PP, and PE were 94.68%, 80.76%, and 84.27%, respectively, which is consistent with the theoretical purity. Results of the study can provide a theoretical and experimental reference for one‐pass electrostatic separation of three kinds of plastic particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call