Abstract

We study the boundary of an open smooth complex algebraic variety U . We ask when the cohomology of the geometric boundary Z = X \U in a smooth compactification X is pure with respect to the mixed Hodge structure. Knowing the dimension of singularity locus of some singular compactification we give a bound for k above which the cohomology H(Z) is pure. The main ingredient of the proof is purity of the intersection cohomology sheaf.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.