Abstract

As unpredictable fracture of the front axle will lead to serious safety accidents, its failure behavior study is essential. This paper analyzes typical cracks on I-shaped and leaf springs of the front axle made by Steel A and Steel B. Steel B has a lower content of S, N, Cu, and Sn than Steel A. In order to identify the failure mechanism difference, the low magnification etch test, and metallographic and scanning electron microscope analyses were conducted. The results show that the microstructures are tempered sorbite, and the cracks are with intergranular fracture characteristics. The aggregated distribution of sulfide inclusions in the matrix of Steel A is higher than that of Steel B. Copper-rich particles are detected in the cracks of Steel A. The result indicates that the purity distinction of raw steel can have a big difference on the cracking rate of the front axle even under the same manufacturing process. Relevant suggestions to reduce the cracking are put forward from the aspects of raw materials and process conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.