Abstract

Recently, quantitative NMR (qNMR), especially 1H-qNMR, has been widely used to determine the absolute quantitative value of organic molecules. We previously reported an optimal and reproducible sample preparation method for 1H-qNMR. In the present study, we focused on a 31P-qNMR absolute determination method. An organophosphorus compound, cyclophosphamide hydrate (CP), listed in the Japanese Pharmacopeia 17th edition was selected as the target compound, and the 31P-qNMR and 1H-qNMR results were compared under three conditions with potassium dihydrogen phosphate (KH2PO4) or O-phosphorylethanolamine (PEA) as the reference standard for 31P-qNMR and DSS-d6 as the standard for 1H-qNMR. Condition 1: separate sample containing CP and KH2PO4 for 31P-qNMR or CP and DSS-d6 for 1H-qNMR. Condition 2: mixed sample containing CP, DSS-d6, and KH2PO4. Condition 3: mixed sample containing CP, DSS-d6, and PEA. As conditions 1 and 3 provided good results, validation studies at multiple laboratories were further conducted. The purities of CP determined under condition 1 by 1H-qNMR at 11 laboratories and 31P-qNMR at 10 laboratories were 99.76±0.43% and 99.75±0.53%, respectively, and those determined under condition 3 at five laboratories were 99.66±0.08% and 99.61±0.53%, respectively. These data suggested that the CP purities determined by 31P-qNMR are in good agreement with those determined by the established 1H-qNMR method. Since the 31P-qNMR signals are less complicated than the 1H-qNMR signals, 31P-qNMR would be useful for the absolute quantification of compounds that do not have a simple and separate 1H-qNMR signal, such as a singlet or doublet, although further investigation with other compounds is needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.