Abstract
The purity value assignment of metrologically traceable peptide reference standards requires specialized primary methods. Conventionally, amino acid analysis by isotope dilution tandem mass spectrometry (LC-MS/MS) following peptide hydrolysis is employed as a reference method. By contrast, quantitative nuclear magnetic resonance (qNMR) spectroscopy allows for quantitation of intact peptides, thus eliminating potential bias due to hydrolysis. Both methods are susceptible to interference from related peptide impurities, which need to be accurately measured and accounted for. The mass balance approach has also been employed for peptide purity measurements, whereby the purity is defined by the sum of the mass fraction of all impurities identified. Ideally, results from these three orthogonal methods can be combined for final purity assignment of peptide reference standards. Here we report a novel strategy for correcting both LC-MS/MS and 1H-qNMR results for related peptide impurities and combining results from both methods using a Bayesian statistical approach using mass balance results as prior knowledge. The mass balance method relied on a validated 19F-qNMR method to measure the trifluoroacetic acid (TFA) counter-ion, considered an impurity in this case at nearly 25% by mass. Using a candidate certified reference material (CRM) for angiotensin II, excellent agreement was achieved with the three methods. The final purity value assignment of the candidate CRM was 691 ± 9mg/g (k = 2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.