Abstract

Controlling light with subwavelength-designed metasurfaces (MSs) has allowed for the arbitrary creation of structured light by precisely engineered matter. We report on the purity and conversion efficiency of hybrid orbital angular momentum (OAM)-generating MSs. We use a recently reported method to design and fabricate meta-surfaces that exploit generalized spin-orbit coupling to produce vector OAM states with asymmetric OAM superpositions, e.g., 1 and 5, coupled to linear and circular polarization states, fractional vector OAM states with OAM values of 3.5 and 6.5, and also the common conjugate spin and OAM of ±1 as reported in previous spin-orbit coupling devices. The OAM and radial modes in the resulting beams are quantitatively studied by implementing a modal decomposition approach, establishing both purity and conversion efficiency. We find conversion efficiencies exceeding 75% and purities in excess of 95%. A phase-flattening approach reveals that the OAM purity can be very low due to the presence of undesired radial components. We characterize the effect and illustrate how to suppress the undesired radial modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.