Abstract

Accurate and timely investigation to concentrate grade and recovery is a premise of realizing automation control in a froth flotation process. This study seeks to use deep learning technologies modeling a manufacturing flotation process, forecasting the concentrate purities for iron and the waste silica. Considering the size and temporality of engineering data, we adopted a long short-term memory to form the core part of the deep learning model. To perform this process, 23 variables reflecting a flotation plant were monitored and collected hourly over a half year time span, then wrangled, split, and restructured for deep learning model use. A deep learning model encompassing a stacked long short-term memory architecture was designed, trained, and tested with prepared data. The model’s performance on test data demonstrates the capability of our proposed model to predict real-time concentrate purities for iron and silica. Compared with a traditional machine model typified by a random forest model in this study, the proposed deep learning model is significantly more competent to model a manufacturing froth flotation process. Expected to lay a foundation for realizing automation control of the flotation process, this study should encourage deep learning in mineral processing engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call