Abstract

Deficiencies of two enzymes that catalyze sequential reactions in the purine catabolic pathway have been causally associated with immunodeficiency states. Adenosine deaminase (ADA) deficiency results in severe combined immunodeficiency disease, while purine nucleoside phosphorylase (PNP) deficiency results in an isolated T-cell defect. Recent work in this area has provided major new insights into the molecular pathology of these syndromes. Deoxyadenosine and deoxyguanosine, substrates that accumulate in ADA and deoxyguanosine, substrates that accumulate in ADA and PNP deficiency, respectively, appear to be selectively phosphorylated by lymphoid cells to the corresponding deoxynucleoside triphosphate, resulting in inhibition of DNA synthesis in these cells. Both deoxynucleosides are far more toxic to cultured T lymphoblasts than to B lymphoblasts. Adenosine and deoxyadenosine may have additional lymphotoxic effects mediated by inhibition of essential methylation reactions. These observations help to explain the immunologic manifestations of ADA and PNP deficiency. Perhaps more important, they lay the foundation for the use of deoxynucleosides or enzyme inhibitors, or both, as selective immunosuppressive and chemotherapeutic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call