Abstract

Extracellular adenosine triphosphate (ATP) is a well-recognized mediator of cell-to-cell communication. Here we show ATP effects on bone marrow (BM)-derived human mesenchymal stem cell (hMSCs) functions. ATP-induced modification of hMSCs gene expression profile was assessed by Affymetrix technology. Clonogenic and migration assays in vitro, as well as xenotransplant experiments in vivo, were performed to evaluate the effects of ATP on hMSCs proliferation and BM homing. Enzyme-linked immunosorbent assays were used to assess hMSCs cytokines production, whereas T-cell cultures demonstrated the immunoregulatory activity of ATP-treated hMSCs. hMSCs were resistant to the cytotoxic effects of ATP, as demonstrated by the lack of morphological and mitochondrial changes or release of intracellular markers of cell death. Gene expression profiling revealed that ATP-stimulated hMSCs underwent a downregulation of genes involved in cell proliferation, whereas those involved in cell migration were strongly upregulated. The inhibitory activity of ATP on hMSCs proliferation was confirmed by assessing clonogenic stromal progenitors. ATP potentiated the chemotactic response of hMSCs to the chemokine CXCL12, and increased their spontaneous migration. In vivo, the homing capacity of hMSCs to the BM of immunodeficient mice was significantly increased by pretreatment with ATP. Moreover, ATP increased the production of the proinflammatory cytokines interleukin-2, interferon-γ, and interleukin-12p70, while decreasing the anti-inflammatory cytokine interleukin-10, and this finding was associated with the reduced ability of MSCs to inhibit T-cell proliferation. Our data show that purinergic signaling modulates hMSCs functions and highlights a role for extracellular nucleotides in hMSCs biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.