Abstract

TCR signal strength instructs αβ versus γδ lineage decision in immature T cells. Increased signal strength of γδTCR with respect to pre-TCR results in induction of the γδ differentiation program. Extracellular ATP evokes physiological responses through purinergic P2 receptors expressed in the plasma membrane of virtually all cell types. In peripheral T cells, ATP released upon TCR stimulation enhances MAPK activation through P2X receptors. We investigated whether extracellular ATP and P2X receptors signaling tuned TCR signaling at the αβ/γδ lineage bifurcation checkpoint. We show that P2X7 expression was selectively increased in immature γδ(+)CD25(+) cells. These cells were much more competent to release ATP than pre-TCR-expressing cells following TCR stimulation and Ca(2+) influx. Genetic ablation as well as pharmacological antagonism of P2X7 resulted in impaired ERK phosphorylation, reduction of early growth response (Egr) transcripts induction, and diversion of γδTCR-expressing thymocytes toward the αβ lineage fate. The impairment of the ERK-Egr-inhibitor of differentiation 3 (Id3) signaling pathway in γδ cells from p2rx7(-/-) mice resulted in increased representation of the Id3-independent NK1.1-expressing γδ T cell subset in the periphery. Our results indicate that ATP release and P2X7 signaling upon γδTCR expression in immature thymocytes constitutes an important costimulus in T cell lineage choice through the ERK-Egr-Id3 signaling pathway and contributes to shaping the peripheral γδ T cell compartment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call