Abstract

Incubation of human peripheral blood T-lymphocytes with phytohemagglutinin (PHA) resulted in increased rates of metabolism of the purine bases adenine, hypoxanthine, and guanine. The respective rates decreased to unmeasurable levels in cells incubated without PHA. [ 14C]Adenine was converted predominantly into adenine nucleotides, with slight catabolism to hypoxanthine and very low conversion into guanine nucleotides. [ 14C]Guanine labeled predominantly the guanine nucleotide pool, but some adenine nucleotide formation also took place. From [ 14C]hypoxanthine, adenine nucleotides in the soluble pool were more heavily labeled than the guanine nucleotides, whereas in the nucleic acid fraction the latter contained more radioactivity. Adenosine at low concentrations was mainly phosphorylated to adenine nucleotides, but at higher concentrations this process leveled off, while deamination continued to increase linearly. PHA-stimulation resulted in an increased rate of adenosine metabolism but no qualitative differences in comparison to unstimulated cells were observed. Enzyme assays indicated that after PHA-stimulation the activities of adenine and hypoxanthine phosphoribosyltransferases, and those of adenosine deaminase and kinase, increased with a peak at 48 h, when expressed on a per cell basis, but not at all when expressed per mg of protein. We conclude that stimulation of human T-lymphocytes with PHA increases the capacity of the cells for purine nucleotide synthesis from all the directly re-utilizable catabolic products, namely the purine bases and adenosine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call