Abstract

Extracellular inorganic pyrophosphate (ePPi) plays a key role in the regulation of normal and pathologic mineralization. The purpose of this work was to evaluate the role of P1 and P2 purine receptors in modulating ePPi production by articular chondrocytes. Porcine cartilage explants and chondrocyte monolayers were cultured in the presence of P1 agonists, or a P2 agonist or antagonist and inhibitors of P2 signaling. Ambient media ePPi concentrations were measured after 48-96h. The P1 agonists NECA and CGS 21680 significantly decreased ePPi concentrations surrounding chondrocytes and cartilage explants. The P2 agonist, ADP, increased ePPi levels, and the P2 antagonist, suramin, decreased ePPi concentrations. Thapsigargin and 1,2 bis-(2-aminophenoxy)ethane-N,N,N'N'-tetra acetic acid (BAPTA), which dampen Ca(2+)-related P2 signaling, suppressed the response to ADP. Purine receptors are important regulators of ePPi production by chondrocytes. P1 receptor stimulation diminishes and P2 receptor stimulation enhances ePPi production. Alterations in receptor signaling or aberrations of extracellular purine nucleotide metabolism resulting in abnormal quantities or proportions of P1 and P2 receptor ligands could foster changes in ePPi production that in turn affect mineralization. We propose a homeostatic role for extracellular purine nucleotides and purine receptors in stabilizing ePPi concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.