Abstract

Purine nucleoside phosphorylase (PNP) is an important enzyme in the purine degradation and salvage pathway. PNP deficiency results in marked T lineage lymphopenia and severe immunodeficiency. Additionally, PNP-deficient patients and mice suffer from diverse non-infectious neurological abnormalities of unknown etiology. To further investigate the cause for these neurologic abnormalities, induced pluripotent stem cells (iPSC) from two PNP-deficient patients were differentiated into neurons. The iPSC-derived PNP-deficient neurons had significantly reduced soma and nuclei volumes. The PNP-deficient neurons demonstrated increased spontaneous and staurosporine-induced apoptosis, measured by cleaved caspase-3 expression, together with decreased mitochondrial membrane potential and increased cleaved caspase-9 expression, indicative of enhanced intrinsic apoptosis. Greater expression of tumor protein p53 was also observed in these neurons, and inhibition of p53 using pifithrin-α prevented the apoptosis. Importantly, treatment of the iPSC-derived PNP-deficient neurons with exogenous PNP enzyme alleviated the apoptosis. Inhibition of ribonucleotide reductase (RNR) in iPSC derived from PNP-proficient neurons with hydroxyurea or with nicotinamide and trichostatin A increased the intrinsic neuronal apoptosis, implicating RNR dysfunction as the potential mechanism for the damage caused by PNP deficiency. The findings presented here establish a potential mechanism for the neurological defects observed in PNP-deficient patients and reinforce the critical role that PNP has for neuronal viability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.