Abstract

The mechanism and inhibitor sensitivity of hypoxanthine transport by bloodstream forms of Trypanosoma brucei brucei was investigated. The dose response curve for the inhibition of hypoxanthine transport (1 μM) by guanosine was biphasic; ≈90% of transport activity was inhibited with a K i value of 10.8±1.8 μM, but 10% of the activity remained insensitive to concentrations as high as 2 mM. These two components of hypoxanthine transport are defined as guanosine-sensitive (H2) and guanosine-insensitive (H3). Hypoxanthine influx by both components was saturable, but there was a marked difference in their K m values (123±15 nM and 4.7±0.9 μM for H2 and H3, respectively) although the V max values (1.1±0.2 and 1.1±0.1 pmol (10 7 cells) −1 s −1, n=3) were similar. Hypoxanthine uptake via the H2 carrier was inhibited by purine bases and analogues as well as by some pyrimidine bases and one nucleoside (guanosine), whereas the H3 transporter was sensitive only to inhibition by purine nucleobases. H2-mediated hypoxanthine uptake was inhibited by ionophores, ion exchangers and the potential H +-ATPase inhibitors, N, N′-dicyclohexylcarbodiimide (DCCD) and N-ethylmaleimide (NEM). Measurements of the intracellular pH and membrane potential of bloodstream trypanosomes in the presence and absence of these agents established a linear correlation between protonmotive force and rate of [ 3H]hypoxanthine (30 nM) uptake. We conclude that hypoxanthine transport in bloodstream forms of T. b. brucei occurs by two transport systems with different affinities and substrate specificities, one of which, H2, appears to function as a H +/hypoxanthine symporter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.